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shear strain, and involve considerations of the changes of neighbour distances by the applied 
strain. The unsophisticated' power law' repulsion is considered for illustrative purposes only. 

As in the case of the cohesive energy proper, the theory of the elastic constants and their 
pressure dependence is not completely straightforward.23 A number of simplifying assumptions 
must be made for each material considered. We shall however consider some of the structural 
information which may be derived-from the numbers in Table I. The conventional mode134 on 
which elastic constant calculations are based considers that the only important contributions 
arise from: (1) a long range coulomb energy (e.g. the Madelung term in ionic crystals), (2) the 
Fermi energy contributing principally to the bulk modulus in monovalent metals, but important 
to both shear and bulk moduli in polyvalent metals, and (3) a short-range repulsive interaction 
between neighbouring closed shell ion cores. The usual treatment considers the short-range 
repulsion to depend only on I r I ' i.e. the forces are assumed central. The first group of elements 
listed in Table I is arranged in order of increasing complexity of the interpretation. 
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Fig. 5. Distortions appropriate to C andC' shears ola [110) 
crystal 

The C' shear is equivalent to compression along (100) exten­
sion (010) while maintaining constant volume 

Sodium 

The shear constants of sodium present the least difficult analysis.1? The salient features of 
the sodium data are (1) the elastic anisotropy ratio CjC' does not depend on pressure, (2) the 
value of the shear strain derivatives is-7·2. The zero-pressure values of the elastic constants 
are accounted for quite well by consideration of the electrostatic contribution alone. The 
theoretical value of the electrostatic contribution calculated by Fuchs35 on the basis of a model 
consisting of positive point charges imbedded in a uniform sea of negative charge is: 

C = Ke2jr4, C' = K' e2/r4 

where K and K ' are geometrical constants, r is the lattice parameter, e the electronic charge. 
These were modified36 to take into account variations of charge density in the atomic polyhedron, 
yielding: 

C = KZ2e2/r4, C' = K'Z2e2r 2 

where Z is the ratio of the charge density at the boundaries of the atomic polyhedron to the value 
which would obtain if the valence electron charge were uniformly distributed over the cell. The 
direct ion core interactions in a bcc metal make a positive contribution to C, a negative contribu­
tion to C' and would be expected from arguments given before, to contribute relatively more 
strongly to the strain derivatives. The observation of independence of elastic anistropy on 
volume indicates with certainty then that the ion core term may be neglected in this analysis. 

. Id din C din C'if d· . . f h Numencally, one wou expect din r = -4 = d In r · there were no re- IstnbutlOn 0 c arge 

within the atomic polyhedron when the crystal was compressed. The observation that the strain 
derivative is equal to -7·2 instead of - 4 indicates that, as sodium is compressed, the charge 
density at the cell boundaries increases faster than IjV. Analytically this may be expressed as the 

dIn Z 
volume dependence ofZ, d In V = - 0·54, or in terms of the volume-dependence of the value of 

the normalised wave function of the lowest electronic state at the cell boundary, uo(~c), since 
- 2 d In Uo (rc) ... . 

Z = I Uo (re) I, d In V = - 0·27. Qualitanvely this effect may be explamed by the con-

sideration that the space within the cell, into which the electron can be compressed as the volume 
is reduced, is only the space between the ion core and the cell walls (even though the cores in 
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adjacent cells do not overlap); so the charge density in that space increases more rapidly with 
compression than would be the case if the electron charge could condense in the entire cell. 
This effect is predicted theoretically by Brooks,37,38 but the experimentally observed effect is 
about twice that of Brooks' theoretical prediction. 

Lithium 
Jain18 has measured the pressure-dependence of the elastic constants of lithium. Since 

Cohen & Heine39 discuss experimental evidence which indicates deviations from sphericity of the 
Fermi surface in lithium, it was of interest to examine the effects of the Fermi contribution to the 

pressure dependences of the elastic constants. Jain's measurements yield values d In C = - 4'1, 
din r 

dIn C' b ' dIn C' dIn C f d' . 
dIn r = - 2·8. The 0 servatlOn dIn r < d In r suggests at once the presence 0 a lfect IOn 

core interaction, but this can be ruled out by the fact that the ratio of nearest-neighbour separa­
tion to ionic diameter is even greater in lithium than in sodium where no ion core effect was 
found. Jain considers the Fermi contribution to the elastic constants using a modified form of 
the model applied by Jones40 to the elastic constants of ,8-brass. The analysis indicates (1) the 
charge-density ratio Z at the atomic cell boundaries increases with decreasing volume as in 
sodium, but at about half the rate observed in sodium, (2) that the Fermi surface which at zero 
pressure bulges out about one-third of the distance between the free electron sphere and the [110] 
planes of the first Brillouin zone41 becomes more distorted as the pressure is increased. The sign 
and magnitude of the effect is in good agreement with the work of Blume42 on the theory of the 
shear constants in lithium and with Ham's theoretical predictions of the shape of the Fermi 
surface. The value of the energy gap across the (110) Brillouin zone planes inferred from these 
data using the model of Cohen & Heine, 0·128 Rydbergs (Ry), compares favourably with 
theoretical estimates ranging from 0·153 to 0·228 Ry.41 With Li, important information about 
the Fermi surface and its change with volume is obtained in a simple experiment, information 
extremely difficult (if not impossible due to the phase transformation in cooling), to obtain 
directly, e.g. by de Haas-van Alphen measurements carried out at high pressure. 

Aluminium 
As far as one is concerned with a study of the Fermi contribution to elastic constants, 

aluminium is the classical example, for which the theory has been worked out by Leigh.43 
Schmunk & Smith15 reworked the theory with better values of the elastic constants of aluminium, 
and in addition considered the effects of pressure. Two of the three valence electrons in aluminium 
can occupy the region contained by the first Brillouin zone (shown in Fig. 6), but the third must 
overlap into the second zone at points indicated by Sand H on the Figure. The shear elastic 
constants are made up of(1) an electrostatic contribution ofthe form C = K Z2e2/r4, C' = K'ZZe2/r4 
as for sodium and lithium, and (2) the contribution due to change of the Fermi energy by a shear 
strain. The ion core interaction is supposed to be an unimportant contributor because of the 
large ratio of nearest-neighbour distance to ionic diameter. The Fermi contribution is broken 
down into a contribution from the full zone, evaluated with use of a free-electron expression for 
the energy, plus a contribution due to the electrons in overlap positions Sand H. In considering 
the contribution of the latter, one must take into account relaxation effects caused by redistribu­
tion of the electrons during shear by a transfer from higher to lower energy positions, an effect 
illustrated in Fig. 7b and 7c which shows.a cross-section of the Brillouin zone and the shifts of 
electron populations with applied C and C' strains. Table Ill-shows values of these contributions 
to the elast1c constants. 

Fill. 6. The Brillouin zone of aluminium, showing positions 
of electron overlap 
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